iD256-ECFA-N2

总线型步进电机驱动器说明书

上海斯达普实业有限公司

TEL: +86-21-65372097 FAX: +86-21-65452047

QQ: 2017047289

联系地址:中国上海市虹口区汶水东路888号2号楼西翼

网址: http://www.sdpmotion.cn

斯建普 100 8

Smart

目 录

1 前	「言	4
	1.1 商品质量保证	4
	1.2 使用注意事项	
	1.3 安全注意事项	4
2 梅	E 述	
,,	2.1 产品介绍	
	2.2 功能特点	
	2.3 技术参数	
	2.4 外形尺寸	
3 示	意图及接口定义	
- / (3.1 电源的接口定义 CN1 (Power)	
	3.2 电机的接口定义 CN2/CN6 (Motor)	
	3.3 抱闸输出接口定义 CN3/CN7 (Brake)	
	3.4 编码器的接口定义 CN4/CN8 (Encoder IN)	
	3.5 输入输出接口定义 CN5/CN9 (I/O)	
	3.6 MicroUSB B 调试接口 CN10	
	3.7 EtherCAT 通讯接口定义 CN13(OUT)/CN14(IN)	
	3.7.1 接口定义	
	3.7.2 RJ45 网口灯定义说明	
	3.8 地址分配	
4 LE	ED 指示灯	
	\1- \7\ 4.1 状态显示	
	4.2 报警显示	
5 #	上源供给	
	5.1 电压	
	5.2 电流	
	5.3 再生电流	
6 信	5号典型接法	
- ,-	6.1 信号输入回路	
	6.2 信号输出回路	
7 申		
	7.1 电机连接方式	
	7.2 注意事项	
8 接	· · · · · · · · · · · · · · · · · · ·	
- •	8.1 接线方法 1	
	8.2 接线方法 2	
	8.3 注意事项	
9 SI	DO 参数说明与设置	
- -	9.1 配置参数	
	9.2 运动参数	
10	常用功能	
	10.1 控制字和运行模式	
	10.2 探针捕获功能	
	10.3 编码器分辨率	
	10.4 输出峰值电流	
	10.7 1111 11 17 111 11 11 11 11 11 11 11 11	. 20

Smart Drive Power

10.5 603F 故障代码	28
	29
	29

1 前言

1.1 商品质量保证

- 购入本产品**一年内**,如发生产品质量问题(客户操作不当或使用条件不符合规范的情况 除外),经我司确认后,可以将故障品返回我司处理。
- 由于**操作不当或使用条件不符合规范**导致故障的,或是采购**一年后**发生任何程度的故障的,则将适当收取维修费用。如果该产品是用在极为重要的工作场合应用的话,为确保系统运行的连贯稳定性,恳请适量考虑购入**备用品**。
- 如以寄送方式将返修品送到我司时,恳请用户确保返修品的产品包装。如在运送过程中 造成其他损坏,恕我司无法对此类故障负责。
- 维修通常需要若干工作日,还望各位谅解。
- 以下几种情况不属于产品质量保证的范畴,敬请各位谅解。
 - A) 因与本公司的使用说明书中规定的条件、环境、操作不符而造成的故障;
 - B) 因由非本公司进行的改造、修理或其他自行拆卸而造成的故障;
 - C) 因以产品规定之外的方法使用而造成的故障;
 - D) 因与本公司出货时的科学与技术水准无法合理预测的事由而引起的故障
 - E) 其他不可抗力原因(如:天灾、战争等)而引起的故障。

1.2 使用注意事项

- 请遵守产品额定值及在本书申明的环境中使用本产品。
- 本公司产品的设计及制造目的,并非是为了让本产品能被使用在关乎生命安全的情况或 环境中。因此如有特殊用途需购入本产品时,请告知本公司业务人员并进行讨论及确 认。
- 本公司不断努力追求更高的质量与更好的顾客信任,但使用本公司产品时请务必考虑多 重备用设计、火情对策设计、误动作防止设计等安全设计,以避免因系统设计引起故障 而发生人身意外、火灾意外等社会性损害。
- 为不断改良特性,本产品今后可能会无事先预告的规格变更或升级。

1.3 安全注意事项

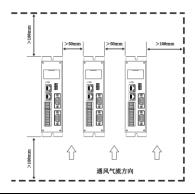
为让所有使用者都能安全使用本驱动器,在本书中如下表列出了安全注意事项。此处记载了注意事项

◆ 危险	表示如发生失误,会有危险状况发生,导致人死亡或重度伤病的可能性。					
⚠注意	表示如发生失误,会有危险状况发生,导致人受到中等程度的人身伤害或轻伤的可能性。也有可能产生物质上的损失。					
◇禁止 表示不得违反						
❶强制	表示必须完成					

①危险

- 通电时请勿用手触摸端子部分以及其内部。**否则有触电的危险。**
- 请勿硬拉或是扭曲线缆,或是在线缆上摆放重物。否则有触电、着火的危险。
- 当电机运转时,请勿接触任旋转中的零件。否则有被卷进回转轴导致受伤的危险。
- 上电状态下,请勿用手触碰驱动器内部。**否则有触电的危险。**
- 电源关闭 5 分钟内,不得接触接线端子。**否则有触电的危险。**
- 请务必将驱动器及电机的接地端子接地。否则有触电的危险。
- 移动、配线、维护、检查等动作请在确认断电后,面板上的显示灯完全熄灭后再进行。**否则有触电的危险。**

⚠注意

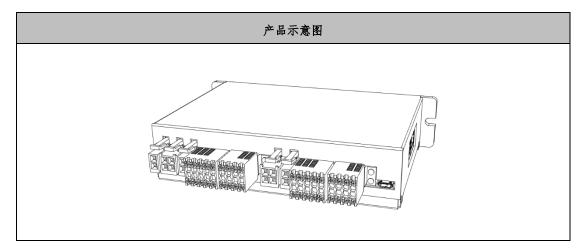

- 请勿在可能沾染水、油、药品飞沫的场所,或是有腐蚀性气体、可燃性气体的场所使用本产品。
- 请严格遵守产品说明书内的要求。否则有产品损毁或人员受伤的危险。
- 驱动器、电机、周边机器本身温度会上升因此请勿触碰。否则有烧烫伤的危险。
- 电机与驱动器请依照指定组合搭配使用。否则有起火的危险。
- 通电时或是断电后不久,驱动器的散热片、电机等可能仍处于高温状态,因此请勿触碰。否则有烧烫伤的危险。
- 请勿对外壳边缘部位施加过大压力。否则有变形的危险。
- 请保证驱动器安装在通风良好、易于维护检查的地方。
- 驱动器的环境温度高于40℃时,请检查排风或换气设备。

◎禁止

- 请勿在会受到阳光直射的场所使用本产品,或是保管本产品。
- 请勿在周围温度湿度超过规定范围的场所使用本产品,或是保管本产品。
- 请勿在有很多粉尘、尘埃等场所使用本产品,或是保管本产品。
- 请勿在会受到直接震动或冲击的场所使用本产品,或是保管本产品。
- 请勿自行修理或改造本产品内外部构造。
- 请勿在驱动器周围设置高发热量和电磁干扰较大的机械设备。

印强制

- 开始运转前,请确认是否可以随时启动紧急开关停机。
- 驱动器之间以及与其他设备间至少保持以下的安装间距。请尽可能保证充分的安装间距,否则会损坏驱动器的使用性能和寿命。

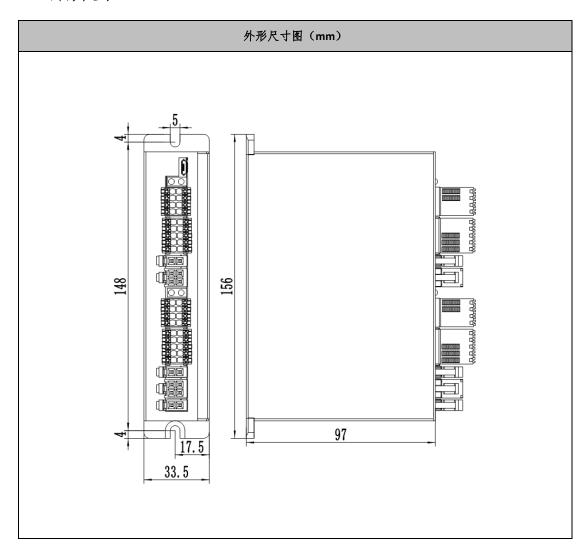


2 概述

2.1 产品介绍

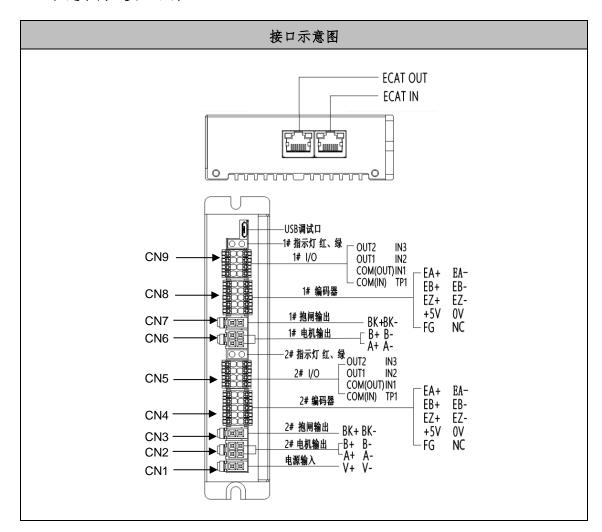
这款总线型步进电机驱动器,支持 EtherCAT 协议,采用先进算法,结合步进的低速大力矩及伺服的闭环技术,真正体现无寻址、不失步、高性价比的特点,且布线简单,安全可靠。这类产品广泛应用于 3C 电子产品封装、液晶产品的制成、检测分析设备、锂电设备、太阳能光伏设备等尖端行业应用上,深受广大用户青睐。

2.2 功能特点


- 输入电源: DC 24V 48V
- 最大输出相电流(峰值): 6.5A
- EtherCAT 通讯控制,支持控制模式 PP、PV、HM、CSP、CSV
- 两轴控制结构更紧凑,彼此独立工作
- 光电隔离输入功能
- 电机短路保护、欠压保护、过压保护、过流保护等功能

2.3 技术参数

项 目	内 容	
驱动器型号	DOLC LOLV NO	
Drive model	iD256-ECFA-N2	
适配电机	两相混合式增量式步进电机	
Adapted motor	2-phase hybrid incremental stepping motor	
输出电流	0.4 A~6.5 A / 相	
Output current	0.4 A ~ 6.5 A / phase	
驱动方式	全桥双极性 PWM 驱动	
Drive mode	Full-bridge dual PWM drive	
过压保护	DC 60V	
Overvoltage protection	DC 60V	
欠压保护	DC 18V	
Undervoltage protection	DC 18V	
初始化时间	2 coc	
Initialization time	2 sec	


-				
	1 路探针输入信号	光耦输入电压: H = 24 V, L = 0~0.8V		
输入信号 1 touch probe input signal		Optocoupler input voltage: H = 24 V, L = 0 ~ 0.8V		
Input signal	3 路通用输入信号	导通电流 5~8 mA		
	3 universal input signals	Conduction current 5 ~ 8 mA		
		光电隔离输出,最高耐受电压 30 VDC,最大饱和电流		
输出信号	2 路通用输出信号	50 mA		
Output signal	2 universal output signals	Photoelectric isolated output with a maximum voltage of		
		30 VDC and a maximum saturation current of 50 mA		
尺寸(不含接线插角	牛) Size	156 × 97 × 34 mm		
重量 Weight		约 380 g		
	使用场合 Surrounding Air Conditions	避免粉尘,油雾及腐蚀性气体 Avoid dust, oil mist and corrosive air		
环境指标	湿度	<85%RH,无凝露		
Environmental	Humidity	<85%RH,no condensation		
Specifications	运行温度	0—40 °C		
	Operating temperature	0-40		
	散热	安装在通风环境中		
	Heat dissipation	Install in a ventilated environment		

2.4 外形尺寸

3 示意图及接口定义

3.1 电源的接口定义 CN1 (Power)

端子号	图示	Pin.	信号名称
CN1		2	电源 V +
CNI		1	电源 V -

^{*}注1:请正确连接电源,注意电源极性。

3.2 电机的接口定义 CN2/CN6 (Motor)

端子号	图示	Pin.	信号名称
	43	4	电机 A+
CN2/CN6		3	电机 B+
CNZ/CN6	21	2	电机 A-
		1	电机 B-

3.3 抱闸输出接口定义 CN3/CN7 (Brake)

端子号	图示	Pin.	信号名称
CN3/CN7	<u> </u>	2	制动输出正 BRK+
CN3/CN7		1	制动输出负 BRK-

^{*}注 2: 最大输出电流 500mA, 无需外接继电器。

3.4 编码器的接口定义 CN4/CN8 (Encoder IN)

端子号	图示	Pin.	信号名称
		1	A+
	·	2	A-
	7-007(3	B+
	25 o 4	4	B-
CNA/CNO		5	Z+
CN4/CN8	ار م درا	6	Z-
	\ ₇ ~ o o ∞ (7	5V
	[ှိ∾ ဝ ဝ ≘(8	0V
		9	FG
		10	FG

^{*}注 4: 请正确连接电源,注意电源极性。(具体接线方法见"8 接线方式")

3.5 输入输出接口定义 CN5/CN9(I/O)

端子号	图示	Pin.	信号名称	描述
		1	IN_COM	单端输入信号公共端,共阴共阳(24VDC) 兼容
		2	TP1	高速输入口,最大输入频率 100KHz
		3	OUT_COM	输出共阴极公共端 (OV)
		4	INI1	通用输入口,18~24V 有效,最大输入频率
		4 IN1	IIVI	1KHz, 信号定义可配置
CN5	N5 2 8 -	5	OUT1	单端输出信号, 共阴接法, 输出最大电流
			0011	50mA, 最大耐压 30VDC。输出功能可配置
		6	IN2	通用输入口,18~24V 有效,最大输入频率
		0 INZ	1KHz, 信号定义可配置	
		7	0.172	单端输出信号,共阴接法,输出最大电流
		,	OUT2	50mA, 最大耐压 30VDC。输出功能可配置
		8	INIO	通用输入口,18~24V有效,最大输入频率
		3	IN3	1KHz, 信号定义可配置

^{*}注 6: 请正确接线。(具体接线方法见"8 接线方式")

^{*}注 3: 出厂默认此功能关闭,当需要此功能时请通过调试软件打开功能并设置相关参数。

^{*}注5: 驱动器输出5V信号供编码器,最大电流200mA。

3.6 MicroUSB B 调试接口 CN10

端子号	图示	详述
CN6		USB 转 MicroUSB 调试线不超过 2 米

3.7 EtherCAT 通讯接口定义 CN13(OUT)/CN14(IN)

3.7.1 接口定义

端子号	图示		Pin.	信号名称	详述
	LED1		1,9	E-TX+	EtherCAT 数据发送正端
		1	2,10	E-TX-	EtherCAT 数据发送负端
			3,11	E-RX+	EtherCAT 数据接收正端
	LED2	8	4,12	NC	
CN13/CN14			5,13	NC	——
		9	6,14	E-RX-	EtherCAT 数据接收负端
			7,15	NC	
	16	16	8,16	NC	
	LED4		连接器外壳	PE	屏蔽接地

*注7: 端子采用标准品: RJ45 类型×2。此图示为以面向插入视角为主视图的各阵脚位置

3.7.2 RJ45 网口灯定义说明

LED 标识	名称	颜色	状态	详述
			关	物理层链路无建立
LED1	Link/Activity IN	绿色	开	物理层链路建立
			闪烁	链路建立后交互数据
			关	初始化状态
LED2	RUN	绿色	闪烁	预操作状态
LEDZ	KUN	然 巴	单闪	安全操作状态
			开	操作状态
	Link/Activity OUT		关	物理层链路无建立
LED3		绿色	开	物理层链路建立
			闪烁	链路建立后交互数据
			关	无错误
			慢闪烁	通信设置错误
LEDA	ERR	红色	单闪	同步错误或通信数据错误
LED4	EKK	紅巴	双闪	请求看门狗超时
			快闪烁	引导错误
			开	内部总线看门狗超时

3.8 地址分配

本款产品由主站分配地址。

4 LED 指示灯

本产品有1个红色和1个绿色 LED 指示灯显示状态。

4.1 状态显示

方式: 完成不同状态下对应的闪烁(0.5 秒低电平, 0.5 秒高电平)次数,完成 2 秒高电平,然后再循环。

状态功能	绿灯状态	通讯代码	说明
使能断开	闪烁	1	断使能,驱动器脱机,电机可以自由运行
电机停止	闪烁	2	开使能, 无脉冲输入, 电机锁相, 未运行
电机运行	常亮	3	有脉冲输入, 电机运行中

4.2 报警显示

方式: 完成不同状态下对应的闪烁(0.5 秒低电平,0.5 秒高电平)次数,完成2 秒高电平,然后再循环。

状态功能	红灯状态	通讯代码	说明
电机过流	闪烁 1 次	10	电机相电流过流或驱动器故障
电机缺相	闪烁 2 次	11	电机未接
欠压	闪烁 4 次	13	电源输入小于 18V
过压	闪烁 3 次	14	电源输入大于 60V
位置超差	闪烁 5 次	25 或 26	25: 位置偏差大于设定值 26: 电机过载, 电流持续输出 1.5 倍超过 2 秒
其他故障	其他	其他	

5 电源供给

5.1 电压

驱动器允许的最大工作电压范围是 24~48V 直流电压,推荐使用 24~48V 直流电压供电。

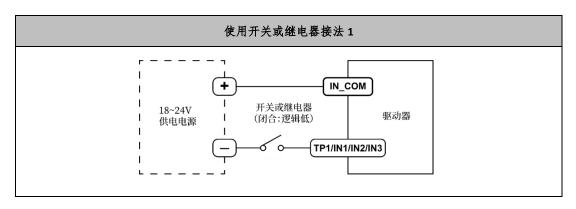
稳压电容可以吸收电源线上的电流尖峰,防止驱动器误保护。 当驱动器低压使用时, 电源输入端建议并联较大的稳压电容,以防止电源电压不稳定导致驱动器低压报警。不建 议驱动器在电源电压低于 18V 时使用,驱动器的工作可能会不可靠。

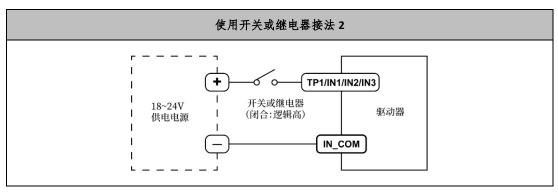
当驱动器使用稳压电源供电,且供电电压接近 60V 时,电源输入端建议采取电压钳位措施,以免发生供电电压高于 60V,驱动器过压报警而停止驱动器工作的情况。

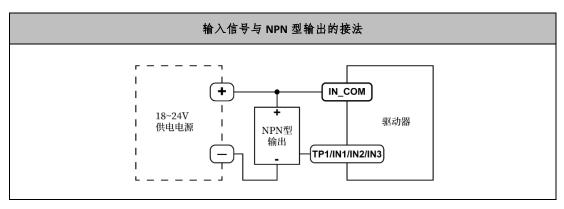
当驱动器使用非稳压电源供电时,请确保电源的空载输出电压值不高于直流 34V。

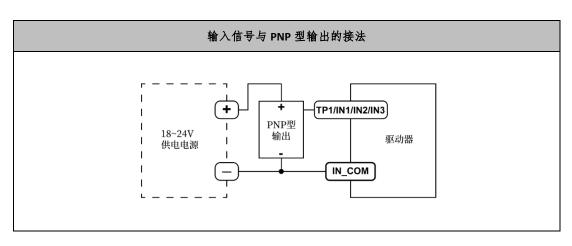
5.2 电流

最大供电电流应该为两相电流之和。通常情况下,您需要的电流取决于电机的型号、 电压、转速和负载条件。实际电源电流值大大低于这个最大电流值,因为驱动器采用的是 开关式放大器,将一个高电压小电流信通过功率开关放大转换成一个低电压大电流信号。 电机绕组的额定电压往往很小,当驱动器的供电电压越高于电机绕组的额定电压时,驱动 器所需的电源输入电流就越小。

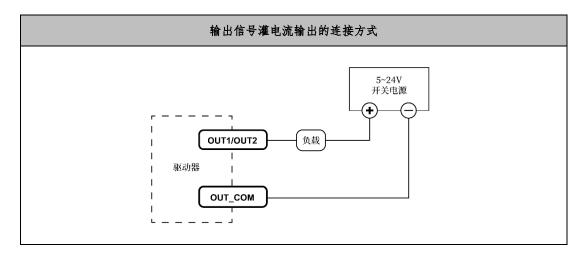

5.3 再生电流

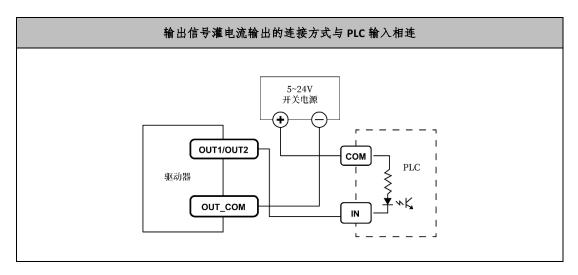

当电机减速的时候,它会像发电机一样将负载的动能转化为电能。一些能量会被驱动器和电机消耗掉。如果您的应用中有大的负载以高速运行,相当大的动能会被转换成电能。通常简单的线性电源有一个大的电容来吸收这些能量而不会对系统造成损坏。开关电源往往会在过压的状况下关闭,多余的能量会回传给驱动器,易造成驱动器报警(过压)甚至可能会造成驱动器的损坏。

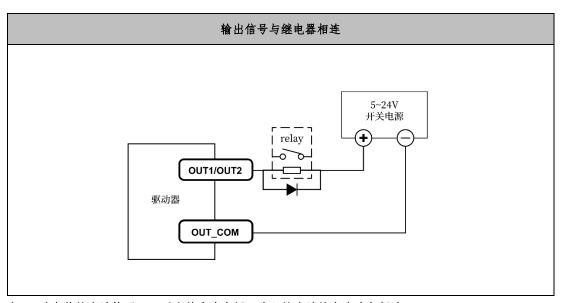



6 信号典型接法

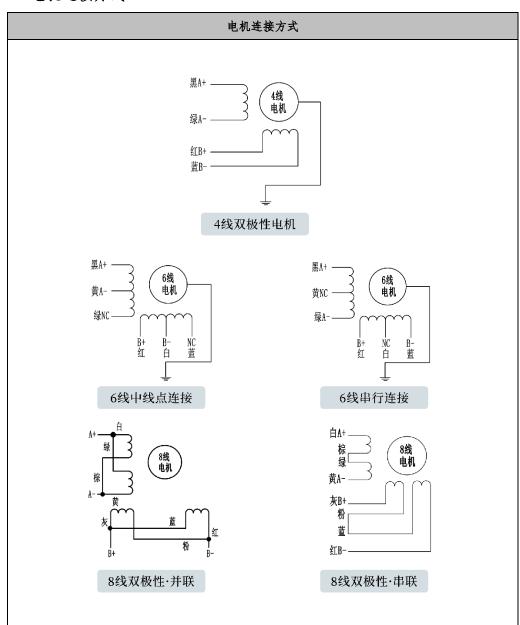
6.1 信号输入回路







6.2 信号输出回路


*注 8: 请勿将输出端接至 30V 以上的直流电压,流入输出端的电流请勿超过 50mA

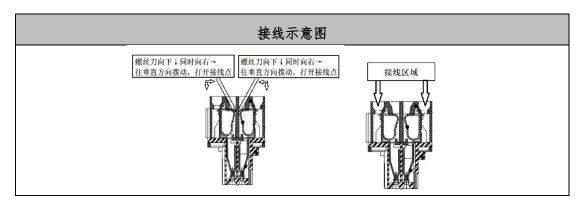
7 电机连接

*警告: 当将电机接到驱动器时,请先确认驱动器电源已关闭。确认未使用的电机引线未与其它物体发生短路。在驱动器通电期间,不能断开电机。不要将电机引线接到地上或电源上。

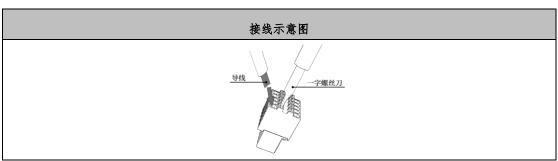
7.1 电机连接方式

7.2 注意事项

- 四线电机只能用一种方式连接。
- 六线电机可以用两种方式连接:全组、半组。在全组模式下,电机在低速下运转具有更大的转矩,但是不能像接在半组那样快速的运转。全组运转时,电机需要以低于半组方式电流的 30%运行以避免过热。在半组模式下,电机在高速度的时候,仍会有平稳的输出。特别适合要求速度的场合。
- 八线电机可以用两种方式连接: 串联、并联。串联方式在低速时具有更大的转矩, 而在 高速时转矩较小。串联运转时, 电机需要以并联方式电流的 50%运行以避免过热


- 不同的电机对应的颜色不一样,使用时以电机资料说明为准,如 57 与 86 型电机线颜色 是有差别的。
- 相是相对的,但不同相的绕组不能接在驱动器同一相的端子上(A+、A-为一相,B+、B-为另一相),若电机转向与期望转向不同时,仅交换A+、A—的位置即可。
- 本驱动器只能驱动两相混合式步进电机,不能驱动三相和五相步进电机。
- 判断步进电机串联或并联接法正确与否的方法: 在不接入驱动器的条件下用手直接转动 电机的轴,如果能轻松均匀地转动则说明接线正确,如果遇到阻力较大和不均匀并伴有 一定的声音说明接线错误。
- 以上电机连接方式中接线颜色为普遍情况,仅供参考,具体接线方式请参考电机规格 说明书

8 接线要求


8.1 接线方法 1

电线**剥线**后,用**标准螺丝刀**打开**接线点**,将电线插入**接线区域**后,移开螺丝刀,电线即可实现自动连接。

8.2 接线方法 2

一字螺丝刀按住端子, 电线剥线后, 插入端子, 直到碰到端子台, 松开一字螺丝刀, 固定电线

*注 9: 请正确接线。并注意将端子插入驱动器时,端子丝滑插入,当手指感到端子嵌合的顿感并且端子发出"咔哒"一声响,则端子插入成功。否则可能导致接线失败。

8.3 注意事项

- 请正确连接电源与电机,接线时注意电源极性
- 电线剥线时,请勿在线头上先上一层焊锡,可能会导致无法正常接线。
- 为了防止驱动器受干扰,建议控制信号采用屏蔽电缆线,并且屏蔽层与地线短接,除特殊要求外,控制信号电缆的屏蔽线单端接地:屏蔽线的上位机一端接地,屏蔽线的驱动器一端悬空。同一机器内只允许在同一点接地,如果不是真实接地线,可能干扰严重,此时屏蔽层不接。
- 如果一个电源供多台驱动器,应在电源处采取并联连接,不允许先到一台再到另一台链 状式连接。
- 严禁带电拔插驱动器强电(电机和电源)端子,带电的电机停止时仍有大电流流过线圈, 拔插强电(电机和电源)端子将导致巨大的瞬间感生电动势将烧坏驱动器。
- 严禁将导线头加锡后接入接线端子,否则可能因接触电阻变大而过热损坏端子。
- 接线线头不能裸露在端子外,以防意外短路而损坏驱动器。
- 请使用专用工具紧固接线端子

Smart

9 SDO 参数说明与设置

- 总线型闭环步进驱动器是标准的 EtherCAT 从站设备,遵循 EtherCAT 标准协议,可与支持该协议的标准主站通讯。
- PC 软件与驱动器采用 MODBUS 协议交互, PC 软件可以修改/读取驱动器所有参数、报警信息及控制驱动器试运行。

9.1 配置参数

- 配置参数地址由基地址和轴编号组成。
- 配置参数的各轴起始编号通过此公式计算: 配置参数地址 = 0x2000 + (轴编号-1) × 0x200。

轴号	地址
轴 1	2000~21FF
轴 2	2200~23FF

以下参数列表以轴 1 为例:

对象 字典	名称	属性	Word	范围	默认值	单位	备注
2064	额定电流 显示	RO	1	0~65535			
2065	母线电压	RO	1	0~65535			
206C	错误码	RO	1	0~65535			
206D	运行状态	RO	1	0~65535			
206E	硬件版本	RO	1	0~65535			
206F	软件版本	RO	1	0~65535			
20C9	运转方向	RW	1	0~3	0		选择电机运行方向及设置编码器方向: bit1=0: 不改变编码器方向、bit1=1:改变编码器方向; bit0=0: 不改变运行方向、bit0=1:改变运行方向。
20CE	控制命令	RW	1	0~5	0		
20D5	空闲电流	RW	1	10~120	50		停止电流为运行电流的 百分比。

	中节性区						O TIT
20D9	电机模式	RW	1	0~2	0		0: 开环,
	设置						1: 闭环。
20E0	滤波系数	RW	1	0~500	50		值越小, 电机运行越平
							滑, 但延迟也越高。
20F1	电流设置	RW	1	400~3000	1000	0.1%A	
20F2	分辨率设 置	RW	2	200~ 102400	10000	PPR	
	空闲电流						电机停止运行后进入半
20F5	时间	RW	1	1~30000	200	ms	流状态的延时时间 (ms)。
	编码器分						分辨率=编码器线数
20F6	辨率	RW	1	200~65535	4000		x4。
20F7	到位范围	RW	1	1~1000	5		
24.00	位置超差	DW	4	4 20000	4000		位置超差阈值,数值为
2102	阈值	RW	1	1~30000	1000		编码器分辨率。
				-2,000,000,000	2,000,00		
213D	正限位	RW	2	~2,000,000,000	0,000	pulse	
					-		
213F	负限位	RW	2	-2,000,000,000	2,000,00	pulse	
				~2,000,000,000	0,000		
							bit0:使能正向软限位功
	内存控制		_		_		能。
2144	开关	RW	1	0~65535	0		bit1:使能反向软限位功
							能。
							0: 端口无效
							7: 紧急停止: 立即停止
0400	IN1 功能	DW	4	0.44			输出,并警告;
2190	选择	RW	1	0~11	0		9: 正限位信号;
							10: 负限位信号;
							11: 原点信号;
							0: 端口无效
							7: 紧急停止: 立即停止
0404	IN2 功能 选择	D\4;		0.44			输出,并警告;
2191		RW	1	0~11	0		9: 正限位信号;
							10: 负限位信号;
							11: 原点信号;

			0:端口无效			
						7: 紧急停止: 立即停止
2192	IN3 功能	RW	1	0~11	0	输出,并警告;
2192	选择	IXVV	ı	0~11	O	9: 正限位信号;
						10: 负限位信号;
						11: 原点信号;
	OUT1 功					
21A4	能选择	RW	1	100~109	101	
	OUT2 功					
21A5	能选择	RW	1	100~109	101	
	输入端口					
21AD	逻辑	RW	1	0~65535	RW	
	输出端口					
21AE	逻辑	RW	1	0~256	RW	

^{*}注 10: 对象字典 2xxx 参数, 通过 SDO 操作写入时会自动保存到 EEPROM, 写入次数有限制, 最大 100 万次。

Smart

9.2 运动参数

- 运动参数地址由基地址和轴编号组成。
- 运动参数的各轴起始编号通过此公式计算:运动参数地址 = 0x6000 + (轴编号-1) × 0x800。

轴号	地址
轴 1	6000~67FF
轴 2	6800~6FFF

以下参数列表以轴1为例:

对象 字典	名称	属性	Word	范围	默认值	単位	备注
603F	错误寄存器	R	1	0~65535	0		
6040	控制字	R/W	1	0~65535	0		
6041	状态字	R	1	0~65535	0		
6060	操作模式	R/W	1	0-255	1		1—pp, 3—pv, 6—Home, 8—CSP 9—CSV
6061	操作模式显示	R	1	0-255	0		
6064	实际位置	R	2	-2147483647~ 2147483647	0	pulse	
606C	实际速度	R	2	-2147483647~ 2147483647	0	RPS	
607A	目标位置	R/W	2	-2147483647~ 2147483647	0	pulse	pp 模式 1 目 标位置指令
607C	原点偏移量	R/W	2	-2147483647~ 2147483647	0	pulse	
6081	梯形速度	R/W	2	1~5000	100	RPS	pp 模式 1 最大速度
6083	加速度	R/W	2	1~5000	50	RPS ^2	pp、pv 模式 1、3 加速度
6084	减速度	R/W	2	1~5000	50	RPS ^2	pp、pv 模式 1、3 减速度
6098	原点方式	R/W	1	0~ 100	21		

			1		T		,
6099 +1	原点接近速 度	R/W	2	1~5000	200	RPS	
6099 +2	原点蠕动速 度	R/W	2	1~5000	100	RPS	
609A	回零加减速	R/W	2	5~10000	50	RPS ^2	
60B8	探针控制字	R/W	1	0~65535	0	无	设置探针功能
60B9	探针状态字	R	1	0~65535	0	无	探针动作状态
60BA	探针数据 1	R	2	-2147483647~ 2147483647	0	Р	probe1 上升 沿捕获数据
60BB	探针数据 2	R	2	-2147483647~ 2147483647	0	Р	probe1 下降 沿捕获数据
60FD	输入端口状态	R	2	0~ 4294967296	0	-1	bit0:负限位 bit1:正限位 bit2:原点 bit16~18:对 应 IN1~IN3 状态
60FE +1	通用输出	R/W	2	0~ 4294967296	0	-1	
60FE +2	匹配位	R/W	2	0~ 4294967296	0		
60FF	目标速度	R/W	0	-5000~5000	0	-	CSV 模式目 标速度

10 常用功能

10.1控制字和运行模式

在同步运动模式下,主站进行轨迹规划并输出周期指令,驱动器按同步周期接收主站的规划指令,适合进行多轴的同步运动。本产品同步运动模式支持循环同步位置模式(CSP)。循环同步位置模式(CSP)下,轨迹规划在主站完成,本产品根据同步周期接收主站发送的位置信息,在同步信号到达时立即将位置信息输送到驱动执行。本产品支持的同步周期为:500 us,1000 us,2000 us,4000 us。

主站只负责发送运动参数和控制命令;本产品闭环步进驱动器在收到主站的运动启动命令后,将按主站发送的运动参数进行轨迹规划;在非同步运动模式下,每个电机轴之间的运动是异步的。本产品非同步运动模式包含协议位置模式(PP)、协议速度模式(PV)及原点模式(HM)。

无论哪种控制模式,EtherCAT 总线主从站间数据交互都通过对象字典来实现,数据传输方式有 PDO 和 SDO 两种方式,一般情况只能二选一,根据控制需要按数据传递实时性要求及重要性分为三个级别:必须>建议>可以。"必须"表示该模式下,对应的对象字典必须配置为 PDO 传输方式。"建议"表示该模式下,对应的对象字典被建议配置为 PDO 传输方式,保障数据实时性,以获得更好的控制需求;如果控制要求不高,也可以通过 SDO 通信方式进行数据传输。"可以"表示该模式下,对应的对象字典一般通过 SDO 通信方式进行数据传输,不必一定要配置为 PDO。各个控制模式所关联的对象字典如下表所示。

	各控制模式关联对象字典											
控制模式	索引+子索引	名称	数据 类型	访问 类型	単位	PDO 配置	SDO 通信					
	6040-00h	控制字	U16	RW	_	必须	-					
	607A-00h	目标位置	132	RW	Р	必须	-					
CSP 模式(8)	6041-00h	状态字	U16	RO	_	配坐处处处可建可建建可可建可可可建设以以以以以以以以以以以以以以以以以以以以以以以以	-					
	6064-00h	实际位置	132	RO	Р	必须	-					
	606C-00h	实际速度	l32	RO	P/S	可以	可以					
DD ## 12 (4)	607A-00h	目标位置	132	RW	Р	建议	可以					
PP 模式(1)	6081-00h	最大速度	U32	RW	Р	可以	可以					
PV 模式(3)	60FF-00h	目标速度	l32	RW	Р	建议	可以					
PP 模式(1)	6040-00h	控制字	U16	RW	_	建议	可以					
PV 模式(3)	6083-00h	加速度	l32	RW	P/S^2	可以	可以					
共有	6084-00h	减速度	U32	RW	P/S^2	可以	可以					
	6040-00h	控制字	U16	RW	_	建议	可以					
110145 146 15	6098-00h	回零方法	18	RW	_	可以	可以					
HOME 模式	6099-01h	原点快速	U32	RW	P/S	可以	可以					
(6)	6099-02h	原点慢速	U32	RW	P/S	可以	可以					
	609A-00h	原点加速度	U32	RW	P/S^2	可以	可以					

	607C-00h	原点偏移	U32	RW	Р	可以	可以
PP、PV和	6041-00h	状态字	U16	RO	_	建议	可以
HOME	6064-00h	实际位置	132	RO	Р	建议	可以
模式共有	606C-00h	实际速度	132	RO	P/S	可以	可以
	60B8-00h	探针功能	U16	RW	_	建议	可以
	60B9-00h	探针状态	U16	RO	_	建议	可以
所有模式共有	60BA-00h	探针 1 捕获值	132	RO	Р	可以	可以
	60FD-00h	数字输入	U32	RO	_	建议	可以
	603F-00h	最新错误代码	U16	RO	Р	建议	可以
	6060-00h	操作模式	18	RW	_	可以	可以
	60B0-00h	位置偏移	132	RW		可以	可以
其他关联参数	6082-00h	起跳速度	U32	RW	P/S	可以	可以
	6085-00h	急停减速度	U32	RW	P/S^2	可以	可以
	6061-00h	操作模式显示	18	RO	_	可以	可以

无论采用哪种控制模式来实现对执行机构的驱动控制,都离不开控制字 6040h 和状态字和 6041h 两个对象字典的读写,主从站通过这两个对象字典作为媒介实现指令下发和状态监视。以下重点介绍这两个对象字典各个位的定义。

控制字(6040h)定义如下表所示。表中左半边描述 bit4~6 和 bit8, 其含义视操作模式而定,主要管控各个模式的运行执行或停止等;表中右半边描述 bit0~3 和 bit7,这几位组合管理着 402 状态机的状态跃迁变化,从而满足复杂多样的控制需求。状态字(6041h)定义如状态字(6041h)位定义表所示。bit0~bit7 主要显示 402 状态机跃迁状态,bit8~bit15 主要显示各个控制模式下运动执行或停止状态。使能的典型状态跃迁如下:

初始(00h)-----上电(06h)-----启动(07h)-----使能(0fh)-----执行运行或暂停(视操作模式, 结合 bit4~6 和 bit8 下发相关的控制指令)。各控制模式下触发运行控制的状态跃迁如各模式控制运行的状态跃迁表所示。

	控制字(6040h)位定义											
模式/位	15~9	8	6	5	4	7	3	2	1	0	典型值	动作 结果
共有	-	暂停	视操	作模式	而定	错误复位	允许 操作	快速停止	电压输出	启动		
CSP 模式 8	-	无效	无效	无效	无效	0	0(x)	1	1	0	06h	得电
PP 模式 1	•	減速停止	绝对 / 相对	立即触发	新位置点	0	0	1	1	1	07h	启动
PV 模式 3	-	減速 停止	无效	无效	无效	0	0(x)	0	1	0(x)	02h	快停

Smart

HM 模式 6	-	減速 停止	无效	无效	启动运动	0	1	1	1	1	Ofh	使能
无						1	0(x)	0(x)	0(x)	0(x)	80h	清错
无						0	0	0	0	0	0	初始

其他位的补充说明:

- 位2快速停止触发逻辑是0有效,注意与其他触发的逻辑区分开。
- 位7错误复位触发逻辑是上升沿有效。
- 位5立即触发触发逻辑是上升沿有效。

			状态字	(6041h)位》	定义			
模式/低8位	7	6	5	4	3	2	1	0
共用	保留	未启动	快速停 止	上电	错误	允许操 作	启动	准备启动
模式/高8位	15	14	13	12	10	8	11	9
共用			视操作机	莫式而定			限位有 效	远程
CSP 模式 8	无效	无效	无效	跟随有 效	无效	保留		
PP 模式 1	保留	保留	无效	新位置 点 应答	位置到达	保留	在硬件限 位有效	PreOP
PV 模式 3	保留	保留	无效	速度为	速度到 达	保留	时 会置位	以下为0
HM 模式 6	保留	保留	原点错误	原点完成	位置到达	保留		

其他位的补充说明:

当驱动器投入电源后位4将置位。

位5快速停止激活,是在逻辑0下才有效,与其他位的逻辑相反。

位 9 远程,显示通讯状态机状态,在 ProOP 以下时为 0,此时控制字(6040h)的命令将 无法执行。

位 11 限位, 在硬件限位有效时才置位。

位8非正常停止,一般在硬件限位、减速停止及快速停止触发状态下有效。

位 12 跟随主站,在 CSP 下若驱动器未使能或者不再跟随主站的指令,该位置 0。

	各模式控制运行的状态跃迁									
	步骤	0	1	2	3	4	5	6	7	8
模式	动作	预备工作	初始	得电	启动	使能	启动运行	变位	停止	故障
CSP 模式 8	6040	建立通信 OP 状态, 激活 NC 轴	00h	06h	07h	Ofh	1fh 主 站发送 指令	主站控制	主站停 止位置 指令	-
	6041	放冶 NC 抽	250h	231h	233h	1237h	1237h	1237h	1237h	238h
	6040	建立通信	00h	06h	07h	0fh	-	2fh->3f h	10fh	-
PP 模式 1	6041	OP 状态, 设置运动参 数	250h	231h	233h	8237h	1237h	1637h- > 1237h	1737h	1238h
PV 模式 3	6040	建立通 OP 状态,设	00h	06h	07h	Ofh	使能后 即运行	变更速 度即可	10fh	1
	6041	置运动参数	250h	231h	233h	1637h	1637h	1637h	1737h	1638h
	6040	建立通 OP	00h	06h	07h	0fh	1fh	无效	10fh	-
HM 模式 6	6041	状态,设置 运动参数	250h	231h	233h	8337h	237h	237h	737h	238h

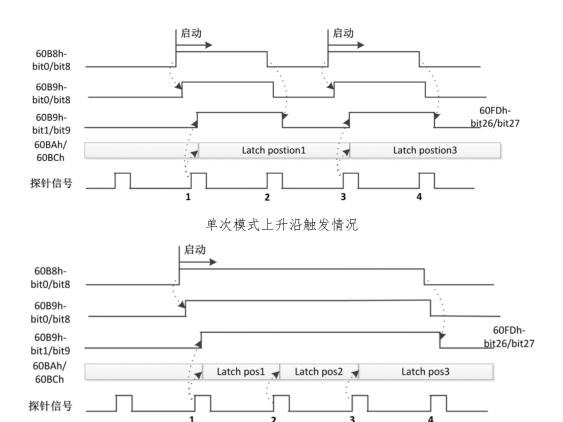
其他位的补充说明:

PP 模式变更位置时,需要给控制字的 bit5 上升沿,才能启动新的位置运动。

10.2探针捕获功能

探针功能是利用具有探针功能的输入信号来捕获电机实际位置,并记录下来。驱动器有两路输入 IO 信号支持探针功能,并可同时启用。探针功能相关对象字典如表下表所示。

目 网											
对象字	位或对象字典含义										
典		世									
	7~6	5	4	3~2	1	0					
		探针1下降	探针 1 上升			版 A A A Ak					
00001	-	沿触发	沿触发	-	探针 1 模式	探针 1 使能					
60B8h	15~14	13	12	11~10	9	8					
		探针2下降	探针 2 上升		版 A D 株 上	坂月 0 件似					
	-	沿触发	沿触发	-	探针 2 模式	探针 2 使能					
	7	6	5~3	2	1	0					
	探针2的实	探针1的实		探针 1 下升	探针 1 上升	探针 1 动作					
CODOL	际电平	际电平		沿触发完成	沿触发完成	中					
60B9h	15~11			10	9	8					
				探针2下升	探针2上升	探针 2 动作					
		<u>-</u>		沿触发完成	沿触发完成	中					
60BAh	探针 1 上升沿扫	甫获数据值寄存	器								
60BBh	探针 1 下升沿扫	甫获数据值寄存	器								
60BCh	探针 2 上升沿扫	甫获数据值寄存	器								
60BDh	探针 2 下升沿扫	探针 2 下升沿捕获数据值寄存器									
60FDh	bit26 状态为 60	DB9的 bit1 和 b	oit2 与逻辑,bit2	27 状态为 60B9	的 bit9 和 bit10	与逻辑					
2152h	可将其子索引(O1h 和 02h 写入	. 17 或 18 配置	为探针 1 或探针	2 功能						


其他位的补充说明:

60B8h 的 bit0 和 bit8: 分别是探针 1 和探针 2 的启用、停止控制位,上升沿有效。

60B8h 的 bit1 和 bit9: 探针模式分为单次模式和连续模式

单次模式:探针启动后,只在第一个触发信号下捕获。为了再次捕获新位置值,必须给 60B8 对象的 bit0/bit8 一个上升沿信号,以重新起动探针动作。

连续模式:探针启动后,每个触发信号下都进行捕获动作。

连续模式上升沿触发情况

10.3编码器分辨率

本驱动器编码器分辨率为 10000, 默认匹配 2500 线编码器电机。如果用户使用的是 5000 线编码器电机,则需要将编码器分辨率改为 20000 (4 倍频)。

编码器分辨率可通过主站 PLC 的对象字典设置,对象字典为: 0x20F6。也可以通过上位机调试软件设置,如下所示:

对象 字典	名称	属性	Word	范围	默认值	单位	备注
20F6	编码器分辨率	RW	1	200~65535	4000		分辨率=编码器线数 x4

10.4 输出峰值电流

如果匹配的是 42 及以下机座的电机,则初次连接电机前,务必先修改驱动器输出峰值电流,以防输出电流过大烧毁电机。

修改输出峰值电流可通过主站 PLC 的对象字典设置,对象字典为: 0x20F1,也可通过上位机调试软件修改,如下所:

对象 字典	名称	属性	Word	范围	默认值	单位	备注
20F1	电流设置	RW	1	0~6500	1000	0.1%A	

10.5 603F 故障代码

603F 对象	故障说明
0x2211	过流故障
0x7120	电机开路
0x3220	欠压
0x3210	过压
0x8611	位置误差过大错误
0xFF23	急停
0xFF19	位置跟随错误
0xFF18	电机超速
0xFF32	通信不稳定

11 附录 1: 《回原点方法》

12 版本更改

版本号	更改时间	更改内容
V1.0	23.02.15	
V2.0	24.12.16	