

iD286pro 说明书

商品保证

- 购入本产品一年之内,如由于**非失误/不当操作**原因而发生故障的话,可以使用快递或物流的方式将故障品运回本公司,之后便可享受免费维修服务。维修通常需要耗费若干工作日,还望各位谅解。
- 由于**操作不当或失误**导致故障发生,或是购入一年过后发生任何程度的故障时,则维修需要收取费用。同上一条所述,可以使用快递或物流的方式将故障品运回本公司。由于维修通常需要耗费若干工作日,如果本产品是用在极为重要的运作系统中的话,为确保系统的稳定性恳请考虑购入备用品。
- 如以寄送方式将本产品送到本公司维修时,在运送过程中造成本产品损坏,恕本公司无法对此类故障负责。

恳请用户在寄之前确认本产品包装中填入充分缓冲材料,并尽量使本产品不受到外部环境过大震动的影响 (0.5G 以下)。

- ▶ 以下服务项目没有包含在本产品的出售价格当中,所以希望各位谅解。
 - A) 与系统适性的检讨、判断(设计时)
 - B) 试运转以及调整 (电机如需调整,则原方案电机将无法退回)
 - C) 在本产品所处现场的故障判定及维修

使用注意事项

- 请遵守额定值及在本书申明的环境中使用本产品。
- 本公司产品的设计及制造目的,并非是为了让本产品能被使用在关乎性命的情况或环境中。因此如有 特殊用途需购入本产品时,请告知本公司业务人员并进行讨论及确认。
- 本公司不断努力追求更高的质量与更好的顾客信任,但使用本公司产品时请务必考虑多重备用设计、 火情对策设计、误动作防止设计等安全设计,以避免因系统设计引起故障而发生人身意外、火灾意外等 社会性损害。
- 为不断改良特性,本产品今后可能会不事先预告而有规格上变更。

安全注意事项

● 为让所有使用者都能安全使用本驱动器,在本书中如下表列出了安全注意事项。此处记载了注意事项

危险

表示如发生失误,会有危险状况发生导致人死亡或重度伤病的可能性。

注意

表示如发生失误,会有危险状况发生导致人受到中等程度的人身伤害或轻伤的可能性。

也有可能产生物质上的损失。

禁止

表示不得违反

强制

表示必须完成

危险

- 通电时请勿用手触摸端子部分以及其内部。否则有触电的危险。
- 请勿硬拉或是扭曲线缆,或是在线缆上摆放重物。**否则有触电、着火的危险。**
- 请勿用手触碰模块可动部分。**否则有被卷进回转轴导致受伤的危险。**
- 请勿用手触碰驱动器内部。**否则有触电的危险。**
- 请务必将驱动器及电机的接地端子接地。**否则有触电的危险。**
- 移动、配线、维护、检查等动作请在确认断电后,面板上的显示 LED 灯灯号完全熄灭后再进行。**否则有**触电的危险。
- 运转中请勿触碰电机回转部分。**否则有受伤的危险。**

注意

● 请勿在可能沾染水、油、药品飞沫的场所,或是有腐蚀性气体、可燃性气体的场所使用本产品。

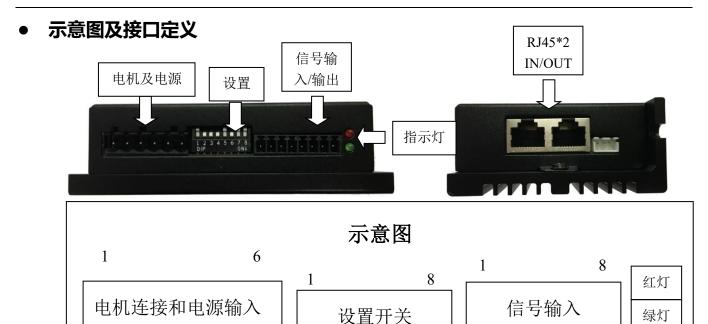
- 请使用规定的电源电压。否则有起火的危险。
- 驱动器、电机、周边机器本身温度会上升因此请勿触碰。**否则有烧烫伤的危险。**
- 配线请正确进行连接。
- 电机与驱动器请依照指定组合搭配使用。否则有起火的危险。
- 通电时或是断电后不久,驱动器的散热片、电机等可能仍处于高温状态,因此请勿触碰。**否则有烧烫伤的危险。**
- 请勿对机壳边缘部位施加过大压力。**否则有受伤的危险。**

◎ 禁止

- 请勿在会受到阳光直射的场所使用本产品,或是保管于此处。
- 请勿在周围温度湿度超过规定范围的场所使用本产品,或是保管于此处。
- 请勿在有很多粉尘、尘埃等场所使用本产品,或是保管于此处。
- 请勿在会受到直接震动或冲击的场所使用本产品,或是保管于此处。
- 请勿自行修理或改造本产品内外部构造。

₽ 强制

• 请于外部设置能实时停止动作的紧急停止回路。


● 功能特点

- 输入电源: DC 24V 72V
- 具有脱机功能采用 RS-485 隔离型总线, 支持标准的 MODBUS-RTU 协议, 最多可挂载 30 个设备
- 总线型驱动器可以实现远距离可靠控制,有效解决干扰环境下脉冲丢失的问题
- 用户可以通过总线设置电流、细分及锁机电流大小、运行模式 (脉冲输入模式、点位控制模式);控制电机启停及对电机运行实时状态进行查询
- 内置单轴控制器功能:用户可以通过总线设置起始速度、加速时间、减速时间、最大速度及总脉冲数等参数实现梯形加减速位置控制功能,支持位置控制、速度控制和回原点等模式
- 3 路光电隔离输入 (5-24VDC 兼容) 功能;脉冲、方向、脱机输入口在点位控制模式下编程设置为通用输入口,接收外部控制信号,实现驱动器使能,启停,急停,限位等功能
- 1 路光电隔离可编程输出接口,输出驱动器状态及控制信号
- 电机短路保护功能
- 试运行功能
- 设有 16 档等角度恒力矩细分
- 电流控制平滑、精准, 电机发热小
- 步进脉冲停止超过 500ms 时, 电机电流进入空闲电流
- 低频小细分时具有极佳的平稳性
- 驱动电流峰值在 6.5A 以下可调
- 具有过压、欠压、过流等保护功能

技术参数

メハシ	· ××	
驱动器型	년	iD286pro
适配电机		适配两相混合式步进电机, iD286pro 最大适配 6.5A
电源供电	<u></u>	24 - 72V DC
输出电流	<u> </u>	iD286pro: 0.1A-6.5A/相
驱动方式	<u>.</u>	全桥双极性 PWM 驱动
<i>t</i> A.)	脉冲信号	V+H+> \ rt - 1
输入	脱机信号	光耦输入电压 H = 3.5 - 26V , L = 0 - 0.8V
信号	方向信号	导通电流 6-15mA
输出 信号 报警输出		光电隔离输出,最高承受电压 30VDC,最大饱和电流 50mA
尺寸		118 × 78 × 34 毫米
重量		约 300 克
	使用场合	避免粉尘,油雾及腐蚀性气体
使用	湿度	< 85 % RH, 无凝露
环境	温度	0°C - +40°C
	散 热	安装在通风环境中

1、信号输入(按图示,排列从左到右顺序)

1 脚---脉冲 STEP+、2 脚---脉冲 STEP-、3 脚---方向 DIR+、4 脚---方向 DIR-

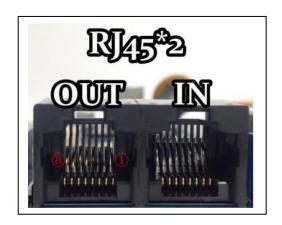
5 脚---脱机 FREE+、6 脚---脱机 FREE-、7 脚---输出 OUT+、8 脚---输出 OUT –

运行模式选择 1: 内部脉冲

1 脚---输入端口 IN1+、2 脚---输入端口 IN1-、3 脚---输入端口 IN2+、4 脚---输入端口 IN2-

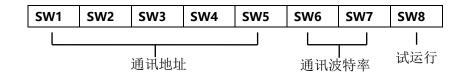
5 脚---输入端口 IN3+、6 脚---输入端口 IN3-、7 脚---输出 OUT+、8 脚---输出 OUT -

2、电机连接和电源输入(按图示,排列从左到右顺序)


1 脚---V+、2 脚---V-、3 脚---A+、4 脚---A-、5 脚---B+、6 脚---B-

3、RS485 IN / RS485 OUT (侧面)

Pin.	信号名称	Pin.	信号名称
1	NC	2	GND
3	A Input (RS485)	4	NC
5	NC	6	B Input (RS485)
7	终端电阻 (OUT)	8	终端电阻 (OUT)


标准品: RJ45 类型 ×2 以面向插入视角看各针脚位置

注意:当使用多台串接时,在最后一台 OUT 口的 3 脚和 8 脚短路、 6 脚和 7 脚短路时,即为接入终端电阻。 备注:IN 口不含终端电阻。

设置开关

4、通讯地址

用户采用 RS-485 总线,最多可以同时控制 30 台 iD286 PRO 驱动器。驱动器通讯地址设置采用 5 位拨码开关,地址设置范围为 1-32,其中地址 32 为系统预留,当驱动器地址设置大于 31 时,需要使用上位调试软件进行设置和保存,并且开关需全设为 OFF (**默认为 1**)。

注意: 1) 一台控制器通过 RS-485 总线最多可以同时控制 30 台 iD286 PRO 驱动器。

2) 每台驱动器的通讯地址设置必须要唯一, 否则会引起通讯错误。

拨 码 开 关					∔ւ ե-↓ւ ∟
SW1	SW2	SW3	SW4	SW5	地址
ON	ON	ON	ON	ON	1
ON	ON	ON	ON	OFF	2
ON	ON	ON	OFF	ON	3
ON	ON	ON	OFF	OFF	4
ON	ON	OFF	ON	ON	5
ON	ON	OFF	ON	OFF	6
ON	ON	OFF	OFF	ON	7
ON	ON	OFF	OFF	OFF	8
ON	OFF	ON	ON	ON	9
ON	OFF	ON	ON	OFF	10
ON	OFF	ON	OFF	ON	11
ON	OFF	ON	OFF	OFF	12
ON	OFF	OFF	ON	ON	13
ON	OFF	OFF	ON	OFF	14
ON	OFF	OFF	OFF	ON	15
ON	OFF	OFF	OFF	OFF	16
OFF	ON	ON	ON	ON	17
OFF	ON	ON	ON	OFF	18
OFF	ON	ON	OFF	ON	19
OFF	ON	ON	OFF	OFF	20
OFF	ON	OFF	ON	ON	21
OFF	ON	OFF	ON	OFF	22
OFF	ON	OFF	OFF	ON	23
OFF	ON	OFF	OFF	OFF	24
OFF	OFF	ON	ON	ON	25

OFF	OFF	ON	ON	OFF	26
OFF	OFF	ON	OFF	ON	27
OFF	OFF	ON	OFF	OFF	28
OFF	OFF	OFF	ON	ON	29
OFF	OFF	OFF	ON	OFF	30
OFF	OFF	OFF	OFF	ON	31
OFF	OFF	OFF	OFF	OFF	自定义

5、通讯波特率

拨码	开 关	波特率 (bps)
SW6	SW7	i以付夲(bps)
ON	ON	4800
ON	OFF	9600
OFF	ON	19200
OFF	OFF	38400

6、试运行

试运行功能用于检验驱动器的性能。断电状态下把第 SW8 档开关拨为 ON。然后上电在无脉冲输入的状态下,将第 SW8 档拨码开关由 ON 档拨到 OFF 档,1 秒后再由 OFF 档拨置 ON 档,即启动试运行功能(电机以 1 转/秒的速度循环正反运动一圈)。

7、空闲电流

驱动器在无脉冲输入500毫秒后,电流将自动进入空闲电流,以减少电机发热,。脉冲输入时电流还原为设定值。

8、指示灯功能

本产品有红色和绿色 2 个 LED 指出灯显示状态:

状态指示:

方式: 完成不同状态下对应的闪烁 (0.5 秒低电平, 0.5 秒高电平) 次数, 完成 2 秒高电平, 然后再循环。

状态功能	绿灯	通讯代码	说明
停止中	闪烁	2	开使能,电机锁相但电机未运行
运行中	常亮	3	驱动器在运行中
使能断开	闪烁	1	使能断开, 电机可以自由

故障指示:

方式: 完成不同状态下对应的闪烁 (0.5 秒低电平, 0.5 秒高电平) 次数, 完成 2 秒高电平, 然后再循环。

报警功能	红灯	通讯代码	说明
电机过流	1绿+1红	10	电机相电流过流或驱动器故障
电机缺相	1绿+2红	11	电机没接
过压	1绿+3红	14	电源输入大于 90V

欠压	1绿+4红	13	电源输入小于 18V	
其他报警	1绿+5红	其他		

● 电源供给:

电压

斩波式驱动器工作时不停地改变电机绕组端电压的大小及方向,同时检测电流以获得精确的相电流。如果要同时保证高效率和低噪音,则驱动器供电电压至少 5 倍于电机额定相电压(即电机额定相电流×相电阻)。

如果您需要电机获得更好的高速性能,则需要提高驱动器供电电压。

如果使用稳压电源供电,要求供电电压不得超过 72V。

如果使用非稳压电源供电,要求电压不得超过 53V。

因为非稳压电源的额定电流是满载电流;在负载很轻,例如电机不转时,实际电压高达电源额定电压的 1.4 倍。想要电机平稳安静的运转,选择低电压。

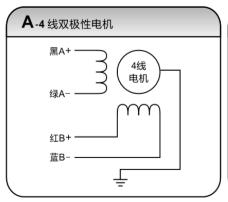
电流

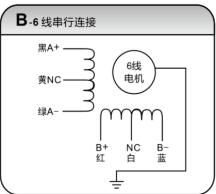
最大供电电流应该为两相电流之和。通常情况下,您需要的电流取决于电机的型号、电压、转速和负载条件。实际电源电流值大大低于这个最大电流值,因为驱动器采用的是开关式放大器,将高电压低电流转换成低电压高电流,电源电压超过电机电压越多,需要的电源电流越少。当电机接 48V 电源工作时,电源输出电流是 24V 电源输出电流的一半。

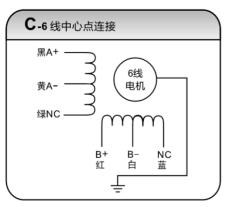
再生放电

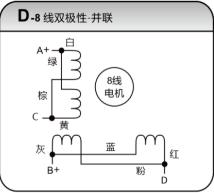
当电机减速的时候,它会像发电机一样将负载的动能转化为电能。一些能量会被驱动器和电机消耗掉。如果您的应用中有大的负载以高速运行,相当大的动能会被转换成电能。易造成驱动器报警(过压)甚至可能会造成驱动器的损坏。

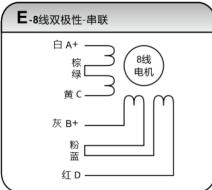
因本驱动器具有电源防接反功能,可防止电源接反造成的驱动器损坏,因此使用外接再生放电装置不起作用。


当您的应用中有大的负载以高速运行情况时,请事先与公司联系,屏蔽防反接功能,并外接再生放电装置。


当无防反接功能时请注意电源正负极不要接反,因电源接反造成的驱动器损坏无法得到保修。




● 电机连接


警告: 当将电机接到驱动器时,请先确认驱动器电源已关闭。确认未使用的电机引线未与其它物体发生短路。在驱动器通电期间,不能断开电机。不要将电机引线接到地上或电源上。

- 1) 四线电机只能用一种方式连接。
- 2) 六线电机可以用两种方式连接:全组、半组。在全组模式下,电机在低速下运转具有更大的转矩,但是不能像接在半组那样快速的运转。全组运转时,电机需要以低于半组方式电流的30%运行以避免过热。
- 3) 八线电机可以用两种方式连接: 串联、并联。串联方式在低速时具有更大的转矩,而在高速时转矩较小。串联运转时,电机需要以并联方式电流的 50%运行以避免过热

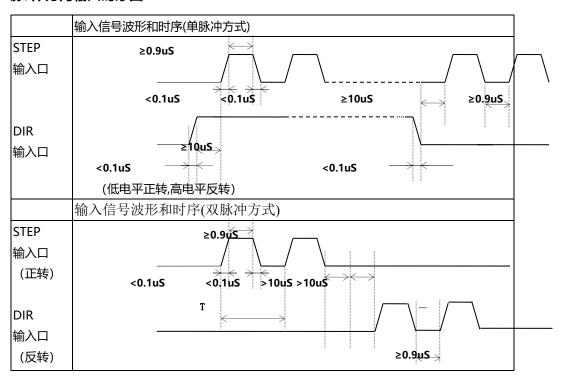
注意:

- 1) 不同的电机对应的颜色不一样,使用时以电机资料说明为准,如 57 与 86 型电机线颜色是有差别的。
- 2) 相是相对的,但不同相的绕组不能接在驱动器同一相的端子上(A+、A-为一相,B+、B-为另一相) ,若电机转向与期望转向不同时,仅交换 A+、A 的位置即可。
- 3) 本驱动器只能驱动两相混合式步进电机,不能驱动三相和五相步进电机。
- 4) 判断步进电机串联或并联接法正确与否的方法: 在不接入驱动器的条件下用手直接转动电机的轴, 如果能轻松均匀地转动则说明接线正确, 如果遇到阻力较大和不均匀并伴有一定的声音说明接线错误。

● 信号输入

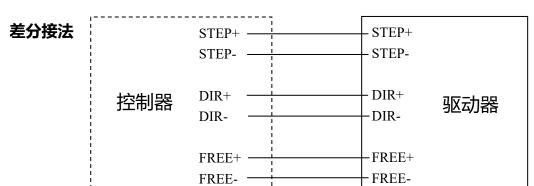
脉冲信号: STEP

驱动器端口内置光耦,可以接受 5-24VDC 单端或差分信号,最高电压可达 26V。其从关断到导通的变化理解为接受一个有效脉冲沿指令。对于共阳极而言低电平为有效(共阴为高电平有效),此时驱动器将按照相应的时序驱动电机运行一步。对于驱动器的正常运行来说,有效电平信号占空比应在 50%以下,为了确保脉冲信号的可靠响应,细分驱动器的脉冲有效电平的持续时间不应少于 1us。细分驱动器的信号响应频率为 500KHz,过高的输入频率将可能得到不正确的响应。

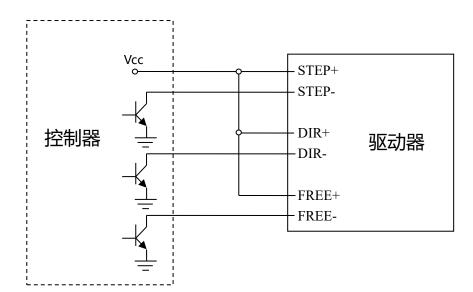

方向信号: DIR

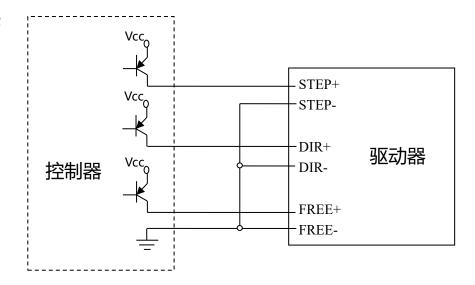
可以接受 5-24VDC 单端或差分信号,最高电压可达 26V。该端的内部光耦的通、断被解释为电机运行的两个方向,方向信号的改变将使电机运行的方向发生变化,该端的悬空被等效认为输入高电平。要注意的一点是,细分驱动器应确保方向信号领先脉冲信号输入至少 10us 建立,从而避免驱动器对脉冲信号的错误响应。电机换向时,一定要在电机减速停止至启动频率后再换向。换向信号一定要在前一个方向信号的最后一个 STEP 脉冲结束后以及下一个方向的第一个 STEP 脉冲前改变。当不需换向时,方向信号端可悬空。

脱机信号: FREE


可以接受 5-24VDC 单端或差分信号,最高电压可达 26V。内置光耦导通时电机相电流被切断,转子处于自由状态 (脱机状态)。**当不需用此功能时,脱机信号端可悬空。**

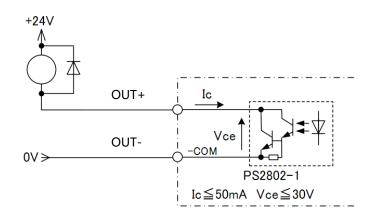
脉冲/方向输入时序图



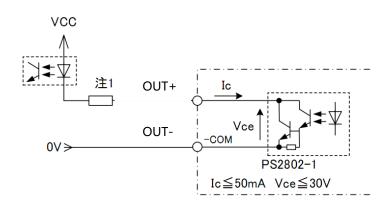

• 信号典型接法

共阳接法

共阴接法



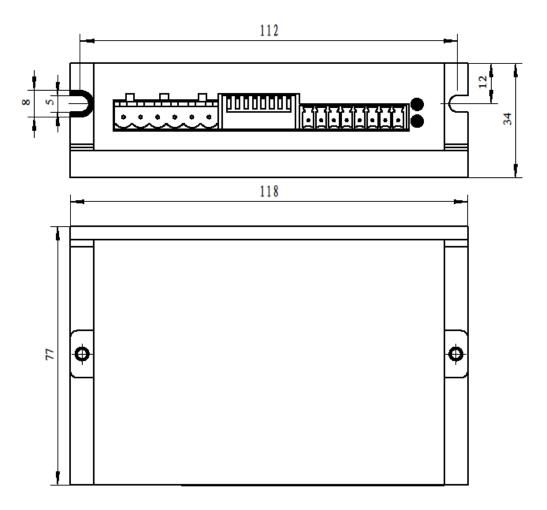
注意: 脉冲、方向和脱机端子都有恒流输入功能,可以直接连接输入信号,而不用外加串联电阻降压限流保护,VCC 值为 3.5-26V。


• 信号输出典型接法

继电器连接

注意:继电器连接时,要求在继电器两端接二极管(如 IN4000 系列)

光耦连接



• 接线要求

- 1) 为了防止驱动器受干扰,建议控制信号采用屏蔽电缆线,并且屏蔽层与地线短接,除特殊要求外,控制信号电缆的屏蔽 线单端接地:屏蔽线的上位机一端接地,屏蔽线的驱动器一端悬空。同一机器内只允许在同一点接地,如果不是真实接地线,可 能干扰严重,此时屏蔽层不接。
- 2)脉冲和方向信号线与电机线不允许并排包扎在一起,最好分开至少 10cm 以上,否则电机噪声容易干扰脉冲方向信号引起电机定位不准,系统不稳定等故障。
 - 3) 如果一个电源供多台驱动器,应在电源处采取并联连接,不允许先到一台再到另一台链状式连接。
- 4) 严禁带电拔插驱动器强电(电机和电源)端子,带电的电机停止时仍有大电流流过线圈,拔插强电(电机和电源)端子将导致巨大的瞬间感生电动势将烧坏驱动器。
 - 5) 严禁将导线头加锡后接入接线端子, 否则可能因接触电阻变大而过热损坏端子。
 - 6) 接线线头不能裸露在端子外,以防意外短路而损坏驱动器。

● 安装尺寸: (单位 mm)

驱动器安装

用窄边安装,用 M3/M4 螺丝通过两边的孔安装。驱动器的功率器件会发热,如果连续工作在高输入电压大功率条件下,应扩大有效散热面积或强制冷却。

不要在空气不流通的地方或者环境温度超过40℃的地方使用;不要将驱动器安装在潮湿或有金属屑的地方。

● MODBUS 通讯

功能介绍

驱动器提供 RJ45 硬件接口以供 Modbus-RTU 协议进行通信,可以选择简易的控制方式驱动电机运行。

串行通讯协议

在驱动器中,提供 RJ45 通信接口,用户可通过 PC/PLC 实现集中控制 (设定驱动器运行命令,功能码参数,读取驱动器功能码参数),以适应特定的使用要求。

a. 相关功能参数

通讯波特率: 19200 (拨码设置)

数据格式: n,8,1

本机地址(ID): 设置范围 1-254

应答延时: 20ms

b. 协议内容

该串行通信协议定义了串行通信中传输的信息内容及使用格式。其中包括: 主机轮询格式; 主机的编码方法, 内容包括: 要求动作的功能码, 传输数据和错误校验等。从机的响应也是采用相同的结构, 内容包括: 动作确认, 返回数据和错误校验等。如果从机在接收信息时发生错误, 或不能完成主机要求的动作, 她将组织一个故障信息作为响应反馈给主机。

c. 应用方式

驱动器接入具备 RS485 总线的"单主多从" PC/PLC 控制网络。

(1) 接口方式

RS485 硬件接口

(2) 传输方式

异步串行, 半双工传输方式。在同一时刻主机和从机只能有一个发送数据而另一个只能接收数据。数据在串行异步通信过程中, 是以报文的形式, 一帧一帧发送。

d. 通讯资料结构

驱动器的 ModBus-RTU 协议通信数据格式如下:

使用 RTU 模式,消息发送至少要以 3.5 个字符时间的停顿间隔开始。在网络波特率下多样的字符时间,这是最容易实现的。传输的第一个域是设备地址。可以使用的传输字符是十六进制的 0...9,A...F。网络设备不断侦测网络总线,包括停顿间隔时间内。当第一个域(地址域)接收到,每个设备都进行解码以判断是否发往自己的。在最后一个传输字符之后,一个至少 3.5 个字符时间的停顿标定了消息的结束。一个新的消息可在此停顿后开始。整个消息帧必须作为一连续的流转输。如果在帧完成之前有超过 1.5 个字符时间的停顿时间,接收设备将刷新不完整的消息并假定下一字节是一个新消息的地址域。同样地,如果一个新消息在小于 3.5 个字符时间内接着前个消息开始,接收的设备将认为它是前一消息的延续。这将导致一个错误,因为在最后的 CRC 域的值不可能是正确的。

RTU 帧格式:

│ 帧头	数据 n-2	数据 0	CRC	帧尾
------	--------	------	-----	----

No.	名称	符号和内容	长度
1			3.5 个字符
2	从机地址(ID)	地址域, 255, 1-254 255 表示全局命令	1byte
3	命令 (Cmd)	03H: 读从机参数; 10H: 写从机两个寄存器参数; 06H: 写从机一	1byte
		个寄存器参数	
4	数据	功能码参数地址,功能码参数个数,功能码参数值等。	多字节
5	校验码 (CRC)	高位在前,低位在后	2byte
6	帧尾		3.5 个字符

e. 协议说明

驱动器通信协议是一种异步串行的主从 ModBus 通信协议,网络中只有一个设备(主机)能够建立协议(称为"查询/命令")。其他设备(从机)只能通过提供数据响应主机的"查询/命令",或根据主机的"查询/命令"做出相应的动作。主机在此是指个人计算机(PC)、工业控制设备或可编程逻辑控制器(PLC)等,从机是指驱动器。

命令一览表

功能码	名称	作用
03H	读命令 (CmdRd)	读从机参数
10H	写命令 (CmdWr)	写从机多个寄存器参数
06H	写一个寄存器命令 (CmdWrone)	写从机一个寄存器参数

通讯参数的地址定义表

*注:除黄色标出参数不自动保存 EEPROM,其它参数均自动保存 EEPROM,写入次数有限制,最大 100 万次。

1.1 控制器基本状态(分类01)

adr	word	内容	详述	范围/单位
0100	1	电机电流	电机实时电流值	0.1%A
0101	1	输入电压	当前输入电压	1%V
0104	2	设置细分	设置细分值	ppr
0106	1	脉冲方式	1 为脉冲+方向模式、2 为双脉冲模式	1-2
0108	1	故障代码	报警时代码,内容指示灯闪烁描述,显示"0"为无	
			故障	
0109	1	运行状态	驱动器运行状态,内容指示灯闪烁描述	
0110	1	硬件版本	驱动器硬件版本	
0111	1	软件版本	驱动器软件版本	
0117	2	当前位置	目标位置	pulse
0119	1	实际转速显示		0.01rps

1.2 基本参数设置 (分类 02)

adr	word	内容	详述	范围/单位
0201	1	 电机方向切换	选择电机运行方向	0~1
0206	1	用户指令	电机停止运行状态下设置	0~5
			1: 用户参数复位	
			2: 清除报警 (除部分硬件故障报警)	
			3: 驱动器重启	
0213	1	半流比例	停止电流比例	10%~120%
0224	1	角度滤波	值越小, 电机运行越平滑, 但延迟也越高	1~700
0234	1	数字滤波	输入脉冲的滤波系数,值越大输入频响越低	1~15
0241	1	输入电流	设置电流	100~6500
				0.1A~-6.5A
0242	2	设置细分	每圈脉冲数	200~102400
				ppr
0244	1	脉冲方式	1: 脉冲+方向模式	1~2
			2: 双脉冲模式	
0245	1	半流时间	电机停止运行后进入半流状态的延时时间	1~32767
				ms
0296	1	运行模式选择	0:外部脉冲	0~1
			1: 内部脉冲	
			默认: 0	
			注: 功能修改后需断电重启	
0298	1	通讯地址	默认: 1	1~255
0299	2	通讯波特率	默认: 19200	1600~115200

1.3 控制用参数 (分类 05)

adr	word	内容	详述	范围/单位
0301	1	启动频率	默认: 100	1~2000
				0.01~20rps
0302	1	停止频率	默认: 100	1~2000
				0.01~20rps
<mark>0303</mark>	1	<mark>加速度</mark>	<mark>默认: 500</mark>	<mark>5~10000</mark>
				<mark>rps2</mark>
<mark>0304</mark>	1	<mark>减速度</mark>	<mark>默认: 500</mark>	<mark>5~10000</mark>
				<mark>rps2</mark>
0305	1	回原点模式	回原点模式, 0: 顺时针回原点 (原点信号)	0~1
			1: 逆时针回原点 (原点信号)	
			2: 顺时针回原点 (正限位信号)	
			3: 逆时针回原点 (负限位信号)	
<mark>0306</mark>	1	<mark>定长运行速度</mark>	<mark>默认: 1000</mark>	<mark>1~5000</mark>
				<mark>0.01~50rps</mark>
<mark>0307</mark>	1	速度模式运行速度	速度模式时,运行方向与速度方向一致	<mark>-5000~5000</mark>
			<mark>默认: 1000</mark>	<mark>-50~50rps</mark>

0308	1	点动运行速度	默认: 1000	1~5000
				0.01~50rps
0309	1		默认: 1000	1~5000
				0.01~50rps
0310	1			1~5000
			默认: 1000	0.01~50rps
0311	2		默认: 0	-
				2000000000~
				2000000000
				pulse
0313	2	输出脉冲	运行行程	-
	-	<u> </u>	绝对位置模式: 运行到指定位置	2000000000~
			相对位置模式:运行设定偏移量行程	2000000000
			默认: 0	pulse
0315	2			-
			默认: 0	2000000000~
				2000000000
				pulse
0317	2	正软限位	默认: 2000000000	-
				2000000000~
				2000000000
				pulse
0319	2	负软限位	默认: -2000000000	-
				2000000000~
				2000000000
				pulse
<mark>0321</mark>	2	<mark>设置当前位置</mark>	<mark>默认: 0</mark>	-
				20000000000~
				2000000000
				pulse
<mark>0323</mark>	1	控制命令	<mark>0: 空</mark>	0~29
			1、绝对运行,运行到设定距离,运行方向由距离正	
			<mark>负确定,速度正负值无效,在运行过程中修改目标位</mark>	
			<mark>置有效</mark>	
			2、相对运行,以设定距离和运行速度运行,运行方	
			向由距离正负确定,速度正负值无效,在运行过程中	
			修改运动距离无效	
			3、速度模式	
			4、正向点动	
			5、反向点动	
			<mark>6、减速停止</mark>	
			7、急停	
			8、设定当前位置,只有在电机停止时才可以设置	

	<mark>11: 原点信号</mark>
	<mark>12、回原点</mark>
	<mark>13、报警清除</mark>
	<mark>14、多段数据检测</mark>
	<mark>15、多段数据保存</mark>
	<mark>16、多段开始</mark>
	<mark>17、多段暂停</mark>
	<mark>18、多段结束</mark>
	<mark>25、多段选择 Bit0</mark>
	<mark>26、多段选择 Bit1</mark>
	<mark>27、多段选择 Bit2</mark>
	<mark>28、多段选择 Bit3</mark>
	<mark>29、多段选择 Bit4</mark>
	<mark>默认: 0</mark>

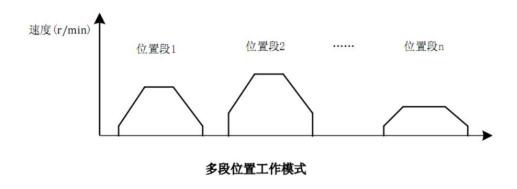
1.4 输入块指定(分类06)

adr	word	内容	详述	范围/单位
0400	1	IN1 功能选择	0: 空	0~30
			1、绝对运行,运行到设定距离,运行方向由距离正	
			负确定,速度正负值无效,在运行过程中修改目标位	
			置有效	
			2、相对运行,以设定距离和运行速度运行,运行方	
			向由距离正负确定,速度正负值无效,在运行过程中	
			修改运动距离无效	
			3、速度模式	
			4、正向点动	
			5、反向点动	
			6、减速停止	
			7、急停	
			8、设定当前位置,只有在电机停止时才可以设置	
			9、正限位	
			10、负限位	
			11: 原点信号	
			12、回原点	
			13、报警清除	
			14、多段数据检测	
			15、多段数据保存	
			16、多段开始	
			17、多段暂停	
			18、多段结束	
			20、使能	
			25、多段选择 Bit0	
			26、多段选择 Bit1	

_				
			27、多段选择 Bit2	
			28、多段选择 Bit3	
			29、多段选择 Bit4	
			默认: 0	
0401	1	IN2 功能选择	设置内容同 IN1(默认值:0)	0~30
0402	1	IN3 功能选择	设置内容同 IN1 (默认值:0)	0~30
0429	1	通用数字输入逻辑		
0410	1	伪通讯设定 IN1	0: OFF (初始值 0)	0~1
			1: ON (触发 IN1 配置的动作)	
0411	1	伪通讯设定 IN2	0: OFF (初始值 0)	0~1
			1: ON (触发 IN1 配置的动作)	
0412	1	伪通讯设定 IN3	0: OFF (初始值 0)	0~1
			1: ON (触发 IN1 配置的动作)	

1.5 输出块指定(分类07)

adr	word	内容	详述	范围/单位
0420	1	OUT1 功能选择	100: 端口无效	100~104
			101:报警输出功能:	
			无报警时有输出信号,有报警时无输出信号。	
			备注:可作抱闸控制输出功能用,要求光耦输出后外接	
			继电器 (抱闸引线接在常开触点即无报警时得电)。	
			103: 使能控制输出:	
			脱机时有输出信号,使能时无输出信号。	
			(默认值: 101)	
0428	1	通用数字输出控制		
0430	1	通用数字输出逻辑		


1.6 多段位置模式 (分类 08)

多段地址范围 1024~1536, 最多可设置 256 个数据

多段命令格式

命令码	word	内容	详述	范围/单位
			参数 1: 运行位置	-2147483647~
1	2	绝对运行	默认: 0	2147483647
				pulse
			参数 1: 运行距离	-2147483647~
2	2	相对运行	默认: 0	2147483647
				pulse
51	1	 启动速度	默认: 100	1~2000
31	1	加纳 达 文		0.01~20rps
53	1	 停止速度	默认: 100	1~2000
33	1			0.01~20rps
54	1	定长速度	默认: 1000	1~5000
J 4	1	足 () 及		0.01~50rps
61	1	加速度	默认: 100	5~10000
01	1	加处汉		rps^2
62	1	減速度	默认: 100	5~10000
02	1	炒 风还/文		rps ²
			参数 3 (高 8 位) /参数 2 (低 8 位) /参数 1 (低	-
			16位)	
65	2	2 等待跳转	参数 1:等待时间到运行下一条指令。若设置为 0,	
0.5	2		为无限等待 IO 信号	
			参数 2: 等待状态满足运行号	
			参数 3: 默认 0	
100	0	多段结束	每个段落结束都需以结束码作为结束标志	-

多段位置模式功能是将多个位置段按一定顺序组合起来,通过外部 IO 信号触发运动,完成一系列位置段动作的一种工作方式。该功能可看作是位置模式的多段组合,用户可以将若干段位置段的描述参数如加减速,脉冲数等事先存储于 EEPROM 中,需要使能这些位置段时只需提供一个触发信号即可完成工作,其工作过程描述如下图所示。

附录

1、例如: 从机地址域 (ID) 为 01 的驱动器的 302 (012EH) 地址读取 1 个值

主机命令信息

从机地址域(ID)	01H			
命令码	03H			
启始地址高位	01H			
启始地址低位	也址低位 2EH			
寄存器个数高位	00H			
寄存器个数低位	01H			
CRC CHK 低位	E5H	计算其 CRC CHK		
CRC CHK 高位	fFH 值			

从机回应信息(1000)

从机地址域(ID)	01H	
命令码	03H	
字节个数	02H	
数据 012AH 高位	03H	
数据 012AH 低位	E8H	
CRC CHK 低位	В8Н	计算其 CRC CHK
CRC CHK 高位	FAH	值

2、 例如: 从机地址域 (ID) 为 01 的驱动器的 304 (0130H) 地址连续读取 2 个值

主机命令信息

从机地址域(ID)	01H		
命令码	03H		
启始地址高位	01H		
启始地址低位 30H			
寄存器个数高位	寄存器个数高位 00H		
寄存器个数低位 02H			
CRC CHK 低位	C5H	计算其 CRC CHK	
CRC CHK 高位	F8H 值		

从机回应信息(10000)

从机地址域(ID)	01H	
命令码	03H	
字节个数	04H	
数据 0130H 高位	27H	
数据 0130H 低位	10H	
数据 0131H 高位	00H	
数据 0131H 低位	00H	
CRC CHK 低位	F1H	计算其 CRC CHK

CRC CHK 高位 42H 值

3、例如: 将 1 (0001H) 写到从机地址域 (ID) 为 01H 驱动器的 300 (012CH) 地址处

主机命令信息(1字节)

从机地址域(ID)	01H		
命令码	06H		
起始地址高位	01H		
起始地址低位	2CH		
数据内容高位	00H		
数据内容低位	01H		
CRC CHK 低位	88H	辻笠甘 CBC CUV 店	
CRC CHK 高位	3FH	计算其 CRC CHK 值	

从机回应信息

从机地址域(ID)	01H	
命令码	06H	
起始地址高位	01H	
起始地址低位	2CH	
数据内容高位	00H	
数据内容低位	01H	
CRC CHK 低位	88H	计算其 CRC CHK 值
CRC CHK 高位	3FH	N 异央 CNC CHN 恒

4、例如: 将 10000 (2710H) 写到从机地址域 (ID) 为 01H 驱动器的 312 (0138H) 地址处 主机命令信息(2 字节)

- 1/04/5 4 ID/O/(- 3 15)			
从机地址域(ID)	01H		
命令码	10H		
起始地址高位	01H		
起始地址低位	38H		
寄存器数量高位	00H		
寄存器数量低位	02H		
字节数 (2*N)	04H		
M 数据内容高位	27H		
M 数据内容低位	10H		
M+1 数据内容高位	00H		
M+1 数据内容低位	00H		
CRC CHK 低位	F7H	· 计算其 CRC CHK 值	
CRC CHK 高位	FCH	N 异央 CRC CHN 但	

从机回应信息

从机地址域(ID)	01H
命令码	10H
起始地址高位	01H

起始地址低位	38H	
寄存器数量高位	00H	
寄存器数量低位	02H	
CRC CHK 低位	вон	→ A CDC CUV 店
CRC CHK 高位	3BH	· 计算其 CRC CHK 值

校验方式——CRC 校验方式: CRC(Cyclical Redundancy Check)

使用 RTU 帧格式, 消息包括了基于 CRC 方法的错误检测域。CRC 域检测了整个消息的内容。CRC 域是两个字节, 包含 16 位的二进制值。它由传输设备计算后加入到消息中。接收设备重新计算收到消息的 CRC, 并与接收到的 CRC 域中的值比较, 如果两个 CRC 值不相等,则说明传输有错误。

CRC 是先存入 0xFFFF,然后调用一个过程将消息中连续的 8 位字节与当前寄存器中的值进行处理。仅每个字符中的 8Bit 数据对 CRC 有效,起始位和停止位以及奇偶校验位均无效。

CRC 产生过程中,每个 8 位字符都单独和寄存器内容相异或(XOR),结果向最低有效位方向移动,最高有效位以 0 填充。LSB 被提取出来检测,如果 LSB 为 1,寄存器单独和预置的值相异或,如果 LSB 为 0,则不进行。整个过程要重复 8 次。在最后一位(第 8 位)完成后,下一个 8 位字节又单独和寄存器的当前值相异或。最终寄存器中的值,是消息中所有的字节都执行之后的 CRC 值。

CRC 添加到消息中时,低字节先加入,然后高字节。 CRC 简单函数如下:
unsigned short crc_chk_value(unsigned char *data, unsigned char length)
{
 unsigned short crc_value=0xFFFF, i;
 while (length--)
 {
 crc_value ^= *data++;
 for (i = 0; i < 8; i++)
 {
 if (crc_value & 0x0001)
 {
 crc_value = (crc_value >> 1) ^ 0xa001;
 }
 else

crc_value = crc_value >> 1;

页 24

}

}

return (crc_value);